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Abstract—In this paper, the synthesis of a nonuniform transmis-
sion line is treated by solving an inverse classical Sturm–Liouville
problem, in which the boundary conditions are described by -pa-
rameters. The related inverse problem is readily solvable if the ter-
minated impedances and -parameters satisfy some required con-
ditions. This method can be used to design transmission-line filters
and impedance transducers for almost arbitrarily provided source
and load impedances.

Index Terms—Filter, inverse problem, nonuniform transmission
line, synthesis.

I. INTRODUCTION

M ANY authors have contributed to the study on nonuni-
form transmission lines (NTLs) in both frequency

and time domain [1]–[3], though most of them are mainly
concerned with the analysis problem. Some authors have
investigated the synthesis problem [4], [5], treating the inverse
scattering problem in time domain, aiming at extending the
function of time-domain reflectometry (TDR) in order that
TDR can be used to reconstruct NTLs. This kind of method
is also applied to time-domain pulse formation [6]. A related
technique has been developed by Huanget al. [7] for designing
quasi-transversal filters. It is efficient for chirp filter designs,
especially when superconducting microstrip lines are used.
Clearly, this method is not aimed at matching a specific load
impedance .

Wohlers [8] described a synthesis approach in frequency
domain, after having examined the realization of an NTL. He
delicately transformed the synthesis problem to an inverse
Sturm–Liouville problem (SLP), adopting Marchenko’ al-
gorithm, but the approach seems unsuitable for engineering
applications due to its low computational efficiency. A more
efficient method is to solve the Zakharov–Shabat (ZS)-type
inverse scattering problem from a given reflection coefficient
[9], [10]. This method is confined to filter designing. It ignored
the boundary conditions for an NTL at the load, simply
truncating the potential function in order that is
zero when or . However, truncating is
different from truncating the time-domain response, and those
papers gave no detailed analysis on the effect of truncating
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Fig. 1. NTL with characteristic impedanceZ (z), source impedanceZ , and
loadZ .

. Roy et al. presented a simpler numerical approach [11],
where characteristic impedance is interpolated with
cubic functions between some selected points, and the design
accuracy can be easily controlled.

This paper presents a new method for NTL synthesizing in
the frequency domain, also based on the Telegrapher’s equa-
tions that describe continuously varying NTLs. The boundary
conditions are explicitly described by-parameters. The syn-
thesis of NTLs is changed into solving the related inverse clas-
sical Sturm–Liouville’s problem. It will be seen that this kind
of inverse problem can be carried out easily when-parameters
are provided. Section II provides some preliminary descriptions
on this problem. A kind of inverse SLP, which is different from
the ZS type and that proposed by Wohlers, is proposed to syn-
thesize NTLs in Section III. A general numerical procedure for
synthesizing NTLs is available in Section IV. Especially in Sec-
tion IV, a practical algorithm and examples for real and
are provided. A device is designed and constructed based on this
algorithm. The simulated and measured results verify that this
method is effective to synthesize NTLs from-parameters for
specific and source impedance . The method also provides
a practical means to adjust local frequency response of an NTL
to a certain extent.

II. PRELIMINARIES

In this section, we give a short review over some elementary
results of NTL synthesizing that will help us to illustrate our
numerical method. We start from the following equations de-
scribing the current and voltage in an NTL (see
Fig. 1):

(1)

(2)
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Following the process in [1], the electrical position and the
local characteristic impedance are defined by

(3)

and

(4)

respectively. With them, (1) and (2) are transformed into

(5)

(6)

Letting and
, we have the following equations:

(7)

(8)

and

(9)

(10)

where and potentials and satisfy

(11)

(12)

(13)

and . Equations (9) and (10) are classical Sturm–Liou-
ville equations. In a synthesis problem, we usually form prereq-
uisite boundary conditions for (9) or (10), and then solve the
inverse classical SLP to obtain or . Finally, we deter-
mine a practical NTL fabrication using (11) or (12).

For the convenience of further discussion, we quote an im-
portant theorem related to this kind of inverse problem [13]:

Theorem 1: Let us write two sets of boundary conditions of
(9) as

(14)

(15)

(16)

Let denote the eigenvalue sequence of (9) with (14) and
(15), and that of (9) with (14) and (16), then when ,
these two sequences determine , , , and uniquely.

This theorem forms the foundation of our synthesis theory in
the following section.

III. SYNTHESIS OF ANNTL FROM ITS -PARAMETERS

In Fig. 1, and are arbitrarily given source and load
impedances, respectively.is the electrical length of the NTL.
The incident and reflected waves are defined by [1]

(17)

(18)

(19)

(20)

where

(21)

(22)

Denote . , , , , and
, should be bounded and analytic at

. With this definition, there exists the following linear
equation for -parameters:

(23)

The matrix satisfies the unitary condition, and the power
gain is given by . Obviously, at , we
have

(24)

(25)

(26)

and at

(27)

(28)

(29)

For a matched NTL, assume , then ,
, and . We can obtain the following

boundary conditions:

(30)

(31)

(32)

(33)

Let be the two independent solutions of
(9) with
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The solution of (9) can then be written as

(34)

For a lossless line, and are real functions, and thus,
are and . Hence,

(35)

and together with (34), we obtain

(36)

(37)

Similarly, from

(38)

and its conjugate equation, we have

(39)

(40)

where the determinant , which
can be further simplified as

(41)

and can especially be written as

(42)

(43)

and stand for the real and imaginary part, respectively.
Thus, to synthesize an NTL means to solve the following inverse
problem: for given , , and -parameters, find a proper po-
tential function such that (9) and boundary conditions (42)
and (43) are observed, and computed from is prac-
tically realizable.

Equations (42) and (43) are a special case when ,
and , in Theorem 1. The related
and must have the following asymptotic estimates [assuming

] [13]:

(44)

(45)

where

Clearly, and are definitely determined by
the asymptotic characteristics of and . As discussed by
Levitan [12], if we are only interested in limited frequency in-
tervals, we actually can choose and for compu-
tational convenience, reasonably having the possibility that, at
infinity, the estimates still hold.

Wohlers [8] has checked the realizability of an NTL (for real
), and provided several conditions for and -parameters

under which there exists a proper NTL to realize the required
for a specified . In this paper, we will derive the required

conditions for them in a slightly implicit way, which leads to
Theorem 2. We will see that this theorem provides a clue for a
practical algorithm.

Theorem 2: For given , , and , if they satisfy the con-
dition that the right-hand sides of (42) and (43) are all entire
functions of order , and have the following asymptotic be-
havior:

(46)

(47)

their zeros and satisfy (44) and (45) simultaneously. There
then exists an NTL with length, which bears the given pa-
rameters with termination of and . The opposite of this
theorem is also true.

To prove this theorem, it is sufficient to note that, for a con-
tinuous potential , and

are all entire functions of order and it is an
overdetermined inverse problem whenand , which satisfy
(44) and (45), are known [13].

After this, we will use a terminology of “qualified, , and
,” if , , and satisfy the conditions inTheorem 2.
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Remark: If a provided is not qualified, we can realize it
only in a limited frequency range to a certain extent that we are
really concerned about in practical problems. What we should
do at first is to find a proper approximation ofthat satisfy the
conditions inTheorem 2. Thus, we have changed the problem
of NTL synthesis to a problem of approximation of a function
in terms of entire functions of order 1/2.

IV. A LGORITHM

A. Algorithm for Qualified

From a qualified -parameter, we construct the potential
function by the following algorithm:

Algorithm 1—For Qualified -Parameter:

Step 1) Take the zeros of the right-hand sides of (42)
and (43) as the eigenvalue sequences and

. From their estimates (44) and (45), calculate
and .

Step 2) Determine from the asymptotic behavior (46)
and (47).

Step 3) There exist a set of integral transformations [14] that
map to a frequency-independent function

, which can be recovered from necessary
eigenvalues

(48)

(49)

(50)

Assume that

(51)

(52)

from the following set of equations:

(53)

(54)

, can be calculated,
hence, . By the algorithm described in [14],
(49) can be solved from these boundary data and

can be constructed from (50). Here, we may
choose

and

as the expansion basis functions.
Step 4) With and , compute from (11).

This procedure can be applied only when is correctly pro-
vided. As was proposed in [8], must be a meromorphic
function, and . can be derived from

by factorizing .

B. Algorithm for Unqualified

Consider a special case whereand are real. In this case,
(42) and (43) come to

(55)

(56)

Denote

and

for convenience. Assume that is provided, then
is also determined for a certain NTL. If we write

, we have , and should only be chosen
such that the conditions inTheorem 2are observed. From this
point-of-view, we compose the following algorithm, and avoid
the factorization proposed by Wohlers.

Algorithm 2—For Unqualified -Parameter:

Step 1) As and are entire functions
of order 1/2, we can write

(57)

(58)
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Choose and , then and
are determined from (46) and (47) as follows:

(59)

(60)

where and . We
do not use (57) and (58) directly in our computation,
but the following alternative ones:

(61)

(62)

Step 2) Let the right-hand sides of (55) and (56) be denoted
by

(63)

(64)

where is dependent only on
. and when

.
Next, we want to use , to approxi-

mate , at fixed points and
, respectively, where

(65)

(66)

and , satisfy (63) and (64). Here, we
choose , , and . At ,

, , and at ,
, . On the

other hand, and are interlaced [13, Th. 3.4.1].
This means that and must change their
signs alternatively; thus, the relating values of the
right-hand sides of (55) and (56) also must. Ac-
cording to the estimates (44) and (45), we have the
following samplingvalues:

(67)

(68)

and additionally . In this paper,
and will be determined by minimizing the fol-
lowing object function:

(69)

where , and corresponds to the upper-
bound of frequency of being practically concerned

(a)

(b)

Fig. 2. (a) Characteristic impedances. (b) Simulated results forjS j. NTL
tapers withZ = 50
, Z = 100
. l = 1. 1: Dolph–Chebyshev taper
A = 0:01. 2: Equiripple taperA = 0:01, A = 0. Equiripple taper 3:
A = 0:002, A = 0:01.

TABLE I
FIRST TEN OPTIMIZED EIGENVALUES

with. Under this approximation, and are
fitted only at the points and , while they are
properly interpolated at other points.

Remark: Practically, as we are only concerned about a lim-
ited frequency interval, we can always choose and

. We can choose the initial data and
, or take , and choose , as the

zeros of and , respectively.
It is important to point out that for an NTL with limited length

, the ripples in both passband and stopband are all intrinsic, and
are correlated with the eigenvaluesand . When becomes
larger, and will come closer, and the ripples tend to be-
come lower.
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(a) (b)

(c) (d)

(e)

Fig. 3. (a) Optimizedf = !y (l; !), f = !y (�),B = 0:875,B = 0:853. (b) Approximatedg(!), q(1) = 1= B +B . (c) Constructedq(x). (d)
RelatedZ (x) with Z = Z = 50
. OptimizedZ (0) = 67
,Z (l) = 51
 whenM = 20,Z (0) = 52
,Z (0) = 50
 whenM = 100. (e) Simulated
results ofS . Synthesis example:S = 0:85exp(�j10!) for !=! 2 [0:3; 0:8]:M = 20 and100:E � 10 .M : the number of� (or� ) to be modified
in the optimization process).

C. Examples

Example 1—Equiripple Tapers:We use the above
algorithm to design equiripple tapers. Assume that

when
, where is ripple level and

is a constant. and
. The designed of

two kinds of equiripple tapers and their simulated
are shown in Fig. 2. The results are compared with those of a
Dolph–Chebyshev taper.

This example shows that, by adjusting the eigenvalueand
, we can modify local frequency response to a certain extent

with resolution dependent upon. A similar method to control
taper ripples can be found in [15].

Example 2—NTL Passband Filter:Suppose that
when the normalized frequency and
through out this interval. , and

. Here, is a normalizing frequency and is a group
delay.

We choose , which means we select the
length of NTL to be ten half-wavelengths at . Thus, there
are ten eigenvalues for and in the interval of

. Assume that we only mind the stopband up to .
Therefore, we should select , where is the eigenvalue
number that is necessary to be optimized [see (69)]. Let

and .
Table I gives the first ten optimized and . Fig. 3(a) and (b)

shows the approximated , , and , while Fig. 3(c)
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(a)

(b)

Fig. 4. (a) Device pattern. (b) Simulated and measured result ofS device
characteristics.f : 8 GHz, passband: 2.4–6.4 GHz.M : 100, device size: 1 cm
� 7.02 cm, measured through an HP8720C network analyzer.

and (d) shows the results of and , respectively. We
also present a simulated result in Fig. 3(e), which is obtained by
treating the NTL as cascaded steps.

As is shown in Fig. 3(d), there exists an abnormal variation
of near . This is due to the choice of
and, in the mean time, is relatively small. We have repeated
the similar process with . The results are also shown
in Fig. 3(d) and (e). It can be seen that the abnormal segment is
diminished, and only the stopband ripples are affected. Actually,
we also found that if we simply cut that abnormal segment off
[until point , see Fig. 3(d)], the affection on is negligible.

We have tested an experimental device. It was built on an
RT/duroid 6010.5 printed circuit board (PCB) with a copper
conductor ( , thickness mm). The nor-
malizing frequency is GHz, the passband
is 2.4–6.4 GHz. The device was produced utilizing a circuit
board plotter (LPKF ProtoMat 91s/VS), as we intend only to
demonstrate the principle. Fig. 4(a) shows the device pattern and
Fig. 4(b) shows the simulated and measured results of. The
errors are partly due to the over milling of the PCB and mis-
matching at the ends of the NTL. The passband characteristics
will certainly be improved if we choose larger(longer NTL).
This is obvious, because for larger, and become smaller,
thus, there will be more sampling points in the passband.

Obviously, when we add a directional coupler at input port,
this NTL is actually a bandpass filter.

V. CONCLUSIONS

Proper boundary conditions from-parameters are pre-
sented. The synthesis of an NTL is turned into an inverse

classical SLP. The examples illustrate that this method can
be used to design NTL filters and transducers for almost
arbitrarily provided source and load impedances. If
can be properly provided, this algorithm can also be applied to
frequency-dependent and .
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